Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Indian J Med Res ; 155(5&6): 565-569, 2022.
Article in English | MEDLINE | ID: covidwho-2040107

ABSTRACT

Background & objectives: The pandemic caused by the SARS-CoV-2 has been a threat to humankind due to the rapid spread of infection and appearance of multiple new variants. In the present study, we report the dynamics and persistence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in asymptomatic and symptomatic COVID-19 patients by chemiluminescent assay. Methods: A total of 463 serum samples from 218 SARS-CoV-2 PCR-positive patients were collected over a period of 124 days post-onset of disease (POD). Antibody levels were measured by chemiluminescence bioanalyzer. Neutralizing antibody titres were assessed by plaque reduction neutralization test (PRNT) for SARS-CoV-2. Results: Both IgM and IgG started appearing from day five post-infection in symptomatic and asymptomatic patients. IgM antibody response peaked around day 35 POD and rapidly diminished thereafter, with the last IgM-positive sample observed at 90 days POD. IgG antibody response peaked around 45 days POD and persisted till 124 days. The chemiluminescence immunoassay (CLIA) results showed a moderate correlation (R=0.5846, P<0.001) compared with PRNT. Additional analysis indicated a neutralizing titre of 250 corresponded to 12.948 AU/ml of YHLO iFlash SARS-CoV-2 IgG units. Interpretation & conclusions: Both symptomatic and asymptomatic COVID-19 patients seem to initiate production of antibody responses from day five of onset of disease. Although the CLIA gives high sensitivity and specificity and also its binding IgG antibody titres may correlate moderately with protective immunity, our results indicate that the values of binding antibody alone may not be a perfect guide to represent virus neutralization titre during donor selection for plasma therapy. However, IgM and IgG antibody detection may help in monitoring the status of disease progression and burden in the community.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin M , Immunoglobulin G , Sensitivity and Specificity
3.
Arch Virol ; 166(12): 3301-3310, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575784

ABSTRACT

Currently, the world is witnessing the pandemic of COVID-19, a disease caused by the novel coronavirus SARS-CoV-2. Reported differences in clinical manifestations and outcomes in SARS-CoV-2 infection could be attributed to factors such as virus replication, infiltration of inflammatory cells, and altered cytokine production. Virus-induced aberrant and excessive cytokine production has been linked to the morbidity and mortality of several viral infections. Using a Luminex platform, we investigated plasma cytokine and chemokine levels of 27 analytes from hospitalized asymptomatic (n = 39) and mildly symptomatic (n = 35) SARS-CoV-2-infected patients (in the early phase of infection), recovered individuals (45-60 days postinfection) (n = 40), and uninfected controls (n = 36) from the city of Pune located in the state of Maharashtra in India. Levels of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α and the chemokine CXCL-10 were significantly higher, while those of the antiviral cytokines IFN-γ and IL-12 p70 were significantly lower in both asymptomatic and mildly symptomatic patients than in controls. Comparison among the patient categories revealed no difference in the levels of the cytokines/chemokines except for CXCL-10 being significantly higher and IL-17, IL-4, and VEGF being significantly lower in the mildly symptomatic patients. Interestingly, levels of all key analytes were significantly lower in recovered individuals than in those in both patient categories. Nevertheless, the level of CXCL10 was significantly higher in the recovered patients than in the controls, indicating that the immune system of SARS-CoV-2 patients may take a longer time to normalize. Our data suggest that IL-6, IL-1ß, TNF-α, CXCL-10, and reduced antiviral cytokines could be used as biomarkers of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Chemokines/immunology , Cytokines/immunology , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , Chemokine CXCL10 , Humans , India/epidemiology , Interleukin-1beta , Interleukin-6 , Tumor Necrosis Factor-alpha
4.
Indian J Med Res ; 152(1 & 2): 82-87, 2020.
Article in English | MEDLINE | ID: covidwho-732736

ABSTRACT

BACKGROUND & OBJECTIVES: The global pandemic caused by SARS-CoV-2 virus has challenged public health system worldwide due to the unavailability of approved preventive and therapeutic options. Identification of neutralizing antibodies (NAb) and understanding their role is important. However, the data on kinetics of NAb response among COVID-19 patients are unclear. To understand the NAb response in COVID-19 patients, we compared the findings of microneutralization test (MNT) and plaque reduction neutralization test (PRNT) for the SARS-CoV-2. Further, the kinetics of NAb response among COVID-19 patients was assessed. METHODS: A total of 343 blood samples (89 positive, 58 negative for SARS-CoV-2 and 17 cross-reactive and 179 serum from healthy individuals) were collected and tested by MNT and PRNT. SARS-CoV-2 virus was prepared by propagating the virus in Vero CCL-81 cells. The intra-class correlation was calculated to assess the correlation between MNT and PRNT. The neutralizing endpoint as the reduction in the number of plaque count by 90 per cent (PRNT90) was also calculated. RESULTS: The analysis of MNT and PRNT quantitative results indicated that the intra-class correlation was 0.520. Of the 89 confirmed COVID-19 patients, 64 (71.9%) showed NAb response. INTERPRETATION & CONCLUSIONS: The results of MNT and PRNT were specific with no cross-reactivity. In the early stages of infection, the NAb response was observed with variable antibody kinetics. The neutralization assays can be used for titration of NAb in recovered/vaccinated or infected COVID-19 patients.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Coronavirus Infections/blood , Neutralization Tests , Pandemics , Pneumonia, Viral/blood , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Child , Chlorocebus aethiops/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells/immunology , Young Adult
5.
Indian J Med Res ; 151(5): 444-449, 2020 May.
Article in English | MEDLINE | ID: covidwho-623927

ABSTRACT

BACKGROUND & OBJECTIVES: Since the beginning of the year 2020, the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted humankind adversely in almost all spheres of life. The virus belongs to the genus Betacoronavirus of the family Coronaviridae. SARS-CoV-2 causes the disease known as coronavirus disease 2019 (COVID-19) with mild-to-severe respiratory illness. The currently available diagnostic tools for the diagnosis of COVID-19 are mainly based on molecular assays. Real-time reverse transcription-polymerase chain reaction is the only diagnostic method currently recommended by the World Health Organization for COVID-19. With the rapid spread of SARS-CoV-2, it is necessary to utilize other tests, which would determine the burden of the disease as well as the spread of the outbreak. Considering the need for the development of such a screening test, an attempt was made to develop and evaluate an IgG-based ELISA for COVID-19. METHODS: A total of 513 blood samples (131 positive, 382 negative for SARS-CoV-2) were collected and tested by microneutralization test (MNT). Antigen stock of SARS-CoV-2 was prepared by propagating the virus in Vero CCL-81 cells. An IgG capture ELISA was developed for serological detection of anti-SARS-CoV-2 IgG in serum samples. The end point cut-off values were determined by using receiver operating characteristic (ROC) curve. Inter-assay variability was determined. RESULTS: The developed ELISA was found to be 92.37 per cent sensitive, 97.9 per cent specific, robust and reproducible. The positive and negative predictive values were 94.44 and 98.14 per cent, respectively. INTERPRETATION & CONCLUSIONS: This indigenously developed IgG ELISA was found to be sensitive and specific for the detection of anti-SARS-CoV-2 IgG in human serum samples. This assay may be used for determining seroprevalence of SARS-CoV-2 in a population exposed to the virus.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Immunoglobulin G/blood , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , India/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Predictive Value of Tests , Prevalence , ROC Curve , Reproducibility of Results , SARS-CoV-2 , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL